

Test Verification of Conformity

On the basis of the tests undertaken, the samples(s) of the below product have been found to comply with the essential requirements of the referenced specifications at the time of the tests were carried out.

Applicant Name & Address	:GLOBAL YEOU DIANN ELECTRIC INDUSTRIAL CO.,LTD.
	No.378,Kaisyuan 4 th Rd., Cianjhen District, Kaohsiung City
	806, Taiwan
Product(s) Tested	: SWITCHING ADAPTER
Brand name	: AMIGO

: Input: 100-240VAC, 50/60Hz, 0.3A Output: 9Vdc, 0.1A

Model(s)

Ratings and principal

Characteristics

:AMS133-0900100FV,AMS133-0900100FB

Relevant

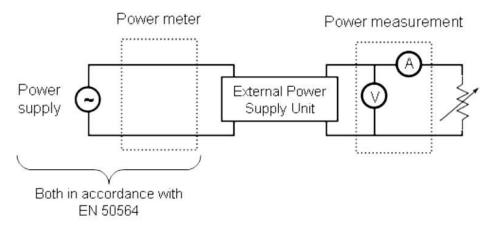
: X COMMISSION REGULATION (EU) 2019/1782 of 1 October 2019 laying down ecodesign requirements for external power supplies pursuant to Directive 2009/125/EC of the European Parliament and of the Council and repealing Commission Regulation (EC) No 278/2009.

NOTE: This verification is part of the full test report(s) and should be read in conjunction with it.

Prepared by: Signature: <u>Qiong Tang</u> Zheng Print: Qiongfang Zheng Date: 2019-12-26

Approved by: Signature: Sunvise Hsiao Print: Sunrise Hsiao Date: 2019-12-26

Г


Global Yeou Diann Electric Industrial Co., Ltd No. 378, Kaisyuan 4th Rd.,Cianjhen District, Kaohsiung City, 806, Taiwan(R.O.C) TEL: 886-7-813-2957 FAX: 886-7-813-2967~68

External Powe	r Supplies Energy Efficiency Test Report				
Applicant:	GLOBAL YEOU DIANN ELECTRIC INDUSTRIAL CO.,LTD.				
Address:	No.378,Kaisyuan 4th Rd., Cianjhen District, Kaohsiung City 806, Taiwan				
Product:	SWITCHING ADAPTER				
Trade Name:	AMIGO				
Model:	AMS133-0900100FV,AMS133-0900100FB				
Rating:	9Vdc, 0.1A				
Input:	100-240VAC, 50/60Hz, 0.3A				
Output:	9Vdc, 0.1A				
Tested by					
(printed name and signature) :	Junjia Hu Jun Jia Hu				
Reviewed by					
(printed name and signature) :	Qiongfang Zheng Qiongfang Zheng				
Approved by					
(printed name and signature) :	Sunrise Hsiao Sunrise Hsiad				
Date of issue:	2019-12-26				
Testing procedure:	EN 50563:2011+A1:2013: External a.c d.c a.c. power supplies -				
	Determination of no-load power and average efficiency of active				
	modes.				
	EN 50564:2011: Electrical and electronic household and office				
	equipment- Measurement of low power consumption.				
Conclusion:	From the results of our testing, we are hereby declare that the product				
	COMPLY WITH COMMISSION REGULATION (EU) 2019/1782 of				
	1 October 2019 laying down ecodesign requirements for external				
	power supplies pursuant to Directive 2009/125/EC of the European				
	Parliament and of the Council and repealing Commission Regulation				
	(EC) No 278/2009.				

Test program and conditions:

- 1. All tests was carried out in a room with an air speed immediately surrounding the UUT of ≤ 0.5 m/s.
- 2. The ambient temperature was maintained at 25 °C throughout the test.
- 3. Measurements were mode for supply voltage of 115V/60Hz and 230V/50Hz.
- 4. The load conditions specified in Table 1 shall be achieved by using a resistive load. The resistive load may be a variable resistor, an electronic test load, or a combination thereof, having a power factor of 0.95 to 1. When an electronic load is used, the constant current mode is used.
- 5. Test set-up according following figure 1.

6. Testing sequence:

The tests shall be conducted as follows:

- a) Using the set-up in figure 1 apply load condition as specified in Table 1.
- b) The output of the EPS shall be maintained at load condition 1 for at least 30 minutes, this is the warm-up period. After this warm-up period the AC input power is monitored for a period of 5 minutes to assess stability. If the input power level does not change by more than 5% during these 5 min the measurement is considered to be stable and the measurements are recorded at the end of the 5 minute period. If the AC input power is not stable over a 5 minute period, stability shall be determined in accordance with EN 50564:2011, 5.3. If load

condition 1 cannot be maintained for either warm-up period or the stability period then compliance with this standard cannot be determined.

- c) Immediately subsequent to b) load conditions 2 through 5 are measured in sequence each with a 5 minute period for determining stability. If is not necessary to repeat the warm-up period unless the EPS is not stable within each of the 5 minute periods. If AC input is not stable over a 5 minute period, stability shall be determined in accordance with EN 50564:2011, 5.3. When it is not possible to immediately follow the preceding test condition a warm-up period of at least 30 min shall be introduced using the relevant load condition.
- d) If the external power supply has a user-selectable output voltage, the above sequence is conducted first with the highest output voltage setting and then the sequence is repeated with the lowest voltage setting.
- 7. Power consumption of the UUT at each Load Condition 1-5 is the difference between the DC output power (W) at that Load Condition and the AC input power (W) at that Load Condition. The power consumption of Load Condition 6 (no load) is equal to the AC input power (W) at that Load Condition.

Loading Condition 1	100% of Derated Nameplate Output Current $\pm 2\%$.
Loading Condition 2	75% of Derated Nameplate Output Current $\pm 2\%$.
Loading Condition 3	50% of Derated Nameplate Output Current ±2%.
Loading Condition 4	25% of Derated Nameplate Output Current ±2%.
Loading Condition 5	10% of Derated Nameplate Output Current $\pm 2\%$.
Loading Condition 6	0%.

TABLE 1—LOADING CONDITIONS FOR UNIT UNDER TEST

Test data:

Load conditions	No load	Active Power Values				
115Vac 60Hz	0%	10%	25%	50%	75%	100%
Total Harmonic Distortion(THD)	0.18	0.18	0.18	0.18	0.18	0.18
RMS Input Power (W)	0.045	0.15	0.326	0.603	0.883	1.168
True Power Factor (W/VA)	0.25	0.33	0.40	0.46	0.50	0.52
Output Voltage (Vdc)	8.88	8.88	8.91	8.94	8.96	8.99
Output Current (mA)		9	25	50	75	100
Active Output Power (W)		0.08	0.223	0.447	0.672	0.899
Power Consumed (W)	0.045	0.07	0.103	0.156	0.211	0.269
Efficiency (%)	/	53.33	68.405	74.129	76.104	76.969
Average Efficiency(%)	/	/	73.90			
Load conditions	No load	Active Power Values				
230Vac 50Hz	0%	10%	25%	50%	75%	100%
Total Harmonic Distortion(THD)	0.48	0.48	0.48	0.46	0.46	0.46
RMS Input Power (W)	0.069	0.18	0.368	0.652	0.932	1.216
True Power Factor (W/VA)	0.18	0.22	0.31	0.36	0.37	0.41
Output Voltage (Vdc)	8.90	8.84	8.87	8.93	8.93	8.99
Output Current (mA)		9	25	50	75	100
		0.00	0.222	0.447	0.670	0.899
Active Output Power (W)		0.08	0.222		0.010	
Active Output Power (W) Power Consumed (W)	0.069	0.08	0.222	0.205	0.262	0.317

TEST RESULTS:

Test item	Required	115V, 60Hz	230V, 50Hz	Verdict	
No load power (W)	$\leq 0.10 $	0.045	0.069	Pass	
Average efficiency $(\%)^{1)}$	≧61.0	73.90	68.67	Pass	
Efficiency of 10% full load (%)	N/A	53.33	44.44	Ref.only	
Complies with performance mark	K VI				

Note: ¹⁾ the average efficiency of 25%, 50%, 75% and 100% full load.

THE LIMITS FOR EXTERNAL POWER SUPPLY:

Single-Voltage External Power Supply, Basic-Voltage					
Nameplate Output	Minimum Average Efficiency	Maximum Power in			
Power (Pout)	in Active Mode	No-Load Mode [W]			
		AC-AC	AC-DC		
$P_{out} \leq 1W$	≥0.5 x P _{out} +0.16	≤0.210	≤0.100		
$1W < P_{out} \le 49W$	\geq 0.071 x ln(P _{out})-0.0014 x P _{out}	≤0.210 ≤0.100			
	+0.67				
49W <pout< td=""><td>≥ 0.880</td><td>≤0.210</td><td>≤0.210</td></pout<>	≥ 0.880	≤0.210	≤0.210		
Single-V	oltage External Power Supply, L	ow-Voltage			
Nameplate Output	Minimum Average Efficiency	Maximum Power in			
Power (Pout)	in Active Mode	No-Load Mode [W]			
$P_{out} \leq 1W$	$\geq 0.517 \text{ x P}_{out} + 0.087$	≤0.100			
$1W < P_{out} \le 49W$	\geq 0.0834 x ln(P _{out})-0.0014 x P _{out}	≤0.100			
	+0.609				
49W <p<sub>out</p<sub>	≥0.870	≤0.210			
Μι	ıltiple-Voltage External Power S	upply			
Nameplate Output	Minimum Average Efficiency	Maximum Power in			
Power (Pout)	in Active Mode	No-Load Mode [W]			
P _{out} ≤1W	$\geq 0.497 \text{ x P}_{out} + 0.067$	≤0.300			
$1W < P_{out} \le 49W$	$\geq 0.075 \text{ x ln}(P_{out}) + 0.561$	≤0.	300		
P _{out} >49W	≥0.860	≤0.300			

Note:

Single-voltage external AC-DC power supply means an external power supply that is designed to convert line voltage AC into lower-voltage DC output and is able to convert to only one DC output voltage at a time.

Single-voltage external AC-AC power supply means an external power supply that is designed to convert line voltage AC into lower-voltage AC output and is able to convert to only one AC output voltage at a time.

Low-voltage external power supply means an external power supply with a nameplate output voltage less than 6 volts and nameplate output current greater than or equal to 550 milliamps. Basic-voltage external power supply means an external power supply that is not a low-voltage power supply.

Equipment List:

Equipment Name	Manufacturer	Model	Reg. No.	Cal. Date	Next Cal.
AC Source	GVERFINE	GK10010	RD-354	2019.1.2	2020.1.1
Digital Power Meter	YOKOGAWA	WT310E	RD-339-12	2019.7.16	2020.7.15
DC Electronic Load	ITECH	HT3150+	TQC-0228	2019.2.2	2020.2.1